
N94- 35968

EXPERIENCE WITH ADA ON THE F-18 HIGH ALPHA

RESEARCH VEHICLE FLIGHT TEST PROGRAM

VICTORIA A. REGENIE, MICHAEL EARLS, AND JEANETTE LE

NASA Dryden Flight Research Facility
Edwards, California

MICHAEL THOMSON

PRC Inc.

Edwards, California

Summary

Considerable experience has been acquired with Ada

at the NASA Dryden Flight Research Facility during

the on-going High Alpha Technology Program. In this

program, an F-18 aircraft has been highly modified by

the addition of thrust-vectoring vanes to the airframe.

In addition, substantial alteration was made in the

original quadruplex flight control system. The result

is the High Alpha Research Vehicle. An additional re-

search flight control computer was incorporated in each
of the four channels. Software for the research flight

control computer was written in Ada. To date, six re-
leases of this software have been flown. This paper pro-

vides a detailed description of the modifications to the

research flight control system. Efficient ground-testing
of the software was accomplished by using simulations

that used the Ada for portions of their software. These

simulations are also described. Modifying and transfer-

ring the Ada flight software to the software simulation

configuration has allowed evaluation of this language.
This paper also discusses such significant issues in us-

ing Ada as portability, modifiability, and testability as

well as documentation requirements.

A/D

D/A

DDI

DPRAM

EEPROM

FAST

FCS

FORTRAN

GE

HARV

HUD

Nomenclature

analog-to-digital

digital-to-analog

digital display indicator

dual port random-access memory

electrically erasable programmable read-

only memory

F-18 FCS automated software testing

flight control system

FORmula TRANslation

General Electric, Lynn, Massachusetts

High Alpha Research Vehicle

head-up display

JOVIAL Jules' Own Version of the International

Algorithmetic Language

LEF leading-edge flaps

McAir McDonnell Aircraft Division, McDonnell

Douglas Corporation, St. Louis,
Missouri

MDTOT parameter identifier

MIL-STD military standard

OBES on-board excitation system

PASCAL Philips Automatic Sequence CALculator

RAM random-access memory

RFCS research flight control system

ROM read-only memory

TEF trailing-edge flaps

UART universal asynchronous receiver-
transmitter

UMN universal memory network

UVPROM ultraviolet programmable read-only

memory

Introduction

Higher order languages have not been extensively

used to develop flight control systems because of the

lack of speed and capacity in the flight control comput-
ers. With the large improvements in computer speed,

or throughput, and in memory, use of higher order lan-

guages is now practical. Examples of higher order lan-

guages used for aircraft include PASCAL (Philips Au-

tomatic Sequence CALculator), JOVIAL (Jules' Own

Version of the International Algorithmetic Language),
and Ada.

Because the United States military selected Ada

for use as the common language, more aircraft will

be flown using this software. Thus, NASA Dryden

Flight Research Facility (DFRF) personnel must be-
come familiar with the language and its capabilities.

63

AnF-18testbedaircraft,theHighAlphaResearchVe-
hicle(HARV),offeredanopportunitytoacquireexperi-
encewith theuseofAdafor flight control Applications.1

The aircraft was built by the McDonnell Aircraft

Division (McAir), McDonnell Douglas Corporation, St.
Louis, Missouri, and the Northrop Corporation, New-

bury Park, California.

This paper describes the DFRF experience with Ada

and details the observed advantages and disadvantages

to using this language. The conclusions reached here
through the use of Ada in the real-time control envi-

ronment are applicable to other control areas as well.

Many real-time control systems using Ada to control

complex systems would be expected to have similar

experiences.

Research Flight Control System

Description

The following subsections describe the hardware,
control laws, and software of the system in which Ada
was used:

Hardware

The HARV is a modified preproduction F-18 aircraft

equipped with spin chute and emergency hydraulic and

electrical systems. These modifications include a sim-

ple, low cost, thrust-vectoring system. This installa-

tion required modifications to the flight control system
and mission computer. 2

The basic F-18 flight control system consists of

quadruplex redundant GE 701E (General Electric,

Lynn, Massachusetts) computers and was modified for

HARV by adding an analog interface to the thrust-

vectoring vane actuators and a research flight control

system (RFCS). Figure 1 shows the F-18 HARV com-
puter architecture. The analog input card and RFCS

were added to spare card slots in the basic flight control

computer. This basic flight control computer main-
tains control of the aircraft; controls input, output, or

both processing functions; communicates with the F-18

mission computer for outer loop control; and displays

information through a military standard (MIL-STD)
1553 data bus. The RFCS was added to provide a

flexible system for control law research. Ada was cho-

sen as the programming language for the RFCS.

The RFCS central processing unit is a MIL-STD-

1750A processor with a 20-MHz clock slaved to the

GE 701E computer (Fig. 1). The RFCS contains
32,000 words of electrically erasable programmable

read-only memory (EEPROM), 16,000 words of ultra-

violet programmable read-only memory (UVPROM),
2,000 words of random-access memory (RAM), and

2,000 words of dual port RAM (DPRAM). The RFCS

communicates to the basic flight control computer

64

through the DPRAM. Hence, RFCS may be called an

embedded control system. It, however, has no direct
control of the aircraft. The aircraft is under RFCS

control only during the research phases of a HARV

flight. First, the RFCS is armed or enabled by a cock-

pit switch. Then, it is engaged or activated through
use of a switch on the control stick. The RFCS is man-

ually disengaged via the arm switch or a control-stick-

mounted paddle switch. Autodisengagement occurs as
a result of internally defined limits on rates, accelera-

tions, engine sensors, and airdata sensors.

Control Laws

The longitudinal control laws contain an angle-
of-attack command system that uses angle-of-

attack, pitch rate, and inertial coupling feedbacks

(Fig. 2). 3 The lateral-directional control laws contain
a feet-on-the-floor stability axis roll rate command sys-

tem (Fig. 3). This system provides the control for the

roll and yaw axes. 3 The lateral-directionai system uses

roll, yaw, and sideslip rates as well as lateral accelera-

tion and inertial coupling as feedback signals.

Figure 4 shows a simplified diagram of the thrust
vane mixer section. This section converts the com-

mand pitch and yaw-vectoring moments computed in

the longitudinal and lateral-directional control laws
into vane commands. The mixer also uses estimated

tl_nst and current vane positions to calculate new vane

commands. The RFCS gross thrust estimator uses noz-

zle pressure ratio, nozzle exit radius, power level angle,

and static pressure to calculate gross thrust.

Software

The RFCS software is programmed in Ada and

was developed on a separate minicomputer system

and cross-compiled to the MIL-STD-1750A processor.
The software is loaded into the flight control com-

puters through an RS232 serial port using a personal

computer.

The original RFCS software was designed and tested

by McDonnell Douglas Corporation under a NASA

contract. None of the real-time kernel capabilities or el-

ements available with Ada, such as taskings, priorities,

terminations, and exceptions, were used for this sys-
tem because of concerns about timing. 4-s The RFCS

software consists mainly of the control laws with a few

redundancy management functions. Because it can al-

ways downmode safely to the F-18 basic flight con-

trol system, the RFCS is not considered flight critical.

Choice of a language impacts neither the number of re-

dundancy management functions nor their complexity.

Redundancy management functions of the RFCS in-
clude such elements as reasonability checks and engage

logic.

TheRFCSsoftwareconsistsof approximately78
Adaspecifications,whichdefinethe interfaceto the
outsideworld,and13Adabodies,whichgivethede-
tailsof theprogram.Thesespecificationsandbodies
consistofapproximately130modules,175procedures,
5 functions,and4,600linesof code(16,302sixteen-
bit wordsof EEPROMand 1,699wordsof RAM).
The RFCSsoftwarecanbe dividedinto six func-
tionalareas.Theseareasincludeinput-outputfunc-
tions,disarm-disengagelogic,longitudinalcontrollaws,
lateral-directionalcontrollaws,thrustvanemixer,and
grossthrustestimator.Figure5showsthesefunctional
areas.TimingestimatesforthecurrentRFCSsoftware
indicatelessthan85percentworstcasethroughputand
50percentmemoryuse.

The input-outputfunctionalareatransfersdata
throughDPRAM,convertsthesedatato andfroma
fixedpointmachine(thebasicflightcontrolsystem)to
the RFCSfloatingpointformat,andchecksfor data
validity. The disarm-disengagelogicfunctionalarea
determineswhethertheRFCSshouldarmor engage.
Thisfunctionalareaincludessuchelementsasenvelope
limitsandreasonabilitychecksoncontrollawfeedbacks
andRFCSoutputs.

Simulations

Three configurations of the real-time HARV simula-
tion are used: an all-software, a hardware-in-the-loop,

and an ironbird. Figures 6, 7, and 8 show that these

configurations use many of the same elements. Detailed

descriptions of these configurations are provided next.

All-Software Simulation

Written in FORmula TRANslation (FORTRAN)

and Ada, the all-software simulation is used for en-

gineering development of control laws, for pilot train-

ing, and for flight test planning. Figure 6 shows the
elements of the all-software simulation. The aircraft

model is performed in the simulation computer and in-
cludes the basic flight control laws as well as the aero-

dynamic, propulsion, thrust-vectoring, sensor, and ac-
tuator models. The only element of the all-software

simulation coded in Ada is the RFCS control laws.

These control laws are in the RFCS control law com-

puter, a Unix-based workstation. Both the simula-

tion computer and RFCS control law computer cycle
at 80 Hz. The simulation cockpit includes the flight

digital display indicators (DDI) and a head-up display

(HUD) along with the simulated instrumentation and

the pilot controls. Other flight hardware include mis-
sion computers and communication system control. An

interface between the research flight control laws and

the basic flight control laws in the simulation emulates

the actual flight system interface as closely as possi-
ble. Four MIL-STD-1553 multiplex buses are included

in the simulation. Three are for communication be-

tween the simulated and flight avionics. One is for an

aircraft model display communication path. In addi-

tion, the thIee MIL-STD-1553 buses model the three
HARV MIL-STD-1553 buses.

Hardware-in-the-Loop Simulation

Hardware-in-the-loop, the most frequently used sim-

ulation configuration, is the primary tool for developing

and testing software. This configuration is also used for

pilot training, flight test planning, and, to a lesser de-

gree, engineering development. In addition, this config-
uration is extensively used for failure modes and effects

testing and for control law validation. Actual flight
control computers replace the control laws modeled in

the simulation computer and the workstation. Figure
7 shows the hardware-in-the-loop simulation. Actuator

models are also moved from the simulation computer

and modeled using analog models. All other elements
of the all-software simulation remain the same.

Ironbird Simulation

Figure 8 shows the ironbird simulation. As a final
check for the system configuration, this simulation con-

figuration is used to measure the closed-loop response
of the control laws and to verify actuator models. A

decommissioned F-18 airplane with hydraulic lines is

used. With the exception of the leading- and trailing-

edge flaps (LEF and TEF), the ironbird simulation re-

places the analog actuator models with the actual flight

actuators.

Compilers

Two Ada compilers were used: one for the RFCS

software and the other for the simulation software.

The cross-compiler used for the RFCS is a TLD Sys-
tems, Limited, Torrance, California, compiler hosted

on a minicomputer. This compiler conforms with MIL-

STD-1815A-1983 requirements. For the simulation

software, a SunPro (Sun Microsystems, Incorporated,

Mountainview, California) Ada language compiler is
used. This compiler also conforms to MIL-STD-1815A-

1983 requirements. No evaluation was done on the dif-
ferent compilers, and only obvious differences, such as

one compiler flagging errors that the other compiler

missed, were noted.

Software Modifications

Two major areas of software modifications are dis-
cussed in this section. These areas include modifica-

tions to the flight software and adaptations of the flight
software to the simulation. McAir developed the RFCS

software in a simulation and then transferred it to the

flight hardware. The DFRF tested the software in the

65

hardware-in-the-loopsimulationandlateraddedthe
RFCSsoftwareto theall-softwaresimulation.

Flight SoftwareModifications
TheRFCSsoftwaredeliveredfromMcAir to DFRF

wasnot testedin aclosed=loopsystembutwasverified
by McAir in anopen-loopenvironmenton theflight
hardware.ThecontractstatedthatNASAwouldcom-
pletetheclosed-loopvalidationtesting.Thecompiler
that McAirandDFRFusedto developtheAdasoft-
wareincludesa profilingtool that allowstimingesti-
matestobegeneratedforthetargetcomputer.Results
of thetimingestimatesmadebyMcAirusingthistool
significantlyunderestimatedtheactualexecutiontime
in theMIL-STD-1750Acomputer.McAirmodifiedthe
RFCSsoftwareduringtheopen-loopteststo improve
its throughput.WhentheRFCSwasdelivered,it was
installedinthehardware-in-the-loopsimulationforval-
idationtesting.Duringthehardware-in-the-loopvali-
dationtesting,RFCSexceededtheallocatedcycletime
for oneunusualsetof conditions.Thecoderequired
modificationto allowsomethroughputmargin.

Thefollowinglist showsthechangesmadeto the
RFCSsoftwaretodate.Severalfunctionswerechanged
from80-to 40-and20-Hzfunctions(items1and2in
list). At thesametime,thecodewasreviewedto find
additionalchangesto increasethethroughputmargin
(item3in list).

1. RFCSmultiratetasking

2. Modifyorder of rate structure

3. RFCS Ada code cleanup

4. Code recon/iguration

5. Change mixer-predictor constant

6. Thrust estimation modification

7. Betadot sign change miscompare

8. On-board excitation system (OBES)

9. RFCS 701E fader gain

10. Fix OBES frequency sweeps by overlay*

11. Fix OBES frequency sweeps and cleanup syntax

12. Static pressure with weight on wheels

13. Fix RFCS flag word outside envelope indication

14. OBES requirements

15. Incorrect differential stabilator, TEF, and LEF

computations

*Indicates an overlay generated.

43.

44.

45.

16. MDTOT sign change

17. OBES cleanup

18. Persistence on betadot and angle of attack

19. Engine parameters channel 1/3 miscompare

20. Change instrumentation scaling of error

signal

21. Update configuration identification to version 24.0

22. Sideslip rate delta tolerance---overlay*

23. Sideslip rate delta tolerance---compile

24. Add test variables for FAST command limit tests

25. Replace message 8 RFCS parameters

26. Change scales of angles of attack and sideslip in
RFCS

27. Change parameters for angle of attack and inertial

navigation system angle of attack scaling to ±180 °

28. OBES aileron rate limit

29. Add component of alphadot and betadot in mis-

sion computer

30. Parameter identification OBES

31. Move RFCS message 17 code

32. Thrust estimator

33. Enable RFCS go

34. Angle-of-attack filter coefficient

35. Message 17 parameter change

36. Message 8 RFCS modification

37. RFCS persistence counter for channel 1/3

miscompare

38. Change constants in pitch and roll trim

processing

39. RFCS scaling for message 8 instrumentation

40. Static pressure with weight on wheels by

overlay*

41. Downlink OBES signal

42. Change configuration identification to version 22.0
in RFCS software

Version 22.0--message 8

Change instrumentation error signal by overlay*

Pitch rate lead and gain changes

66

46.Updateconfigurationidentificationto version23.0

47.Message8word20-bittoggle

48.RFCSthrustfailures

49.Sideslipratedeltaoninstrumentation

50.Angle-of-attackrategainfix

51.Updatefaderate

52.Angle-of-attackscalingandinertialcomponents--
overlay*

53.Updateconfigurationidentificationtoversion25.0

54.Addtestvariablesfor FASTcommandlimit tests

55.ParameteridentificationOBESmodification

56.Updateconfigurationidentificationto version26.0

57.OBEScommandlimiting

58.Collectivetrailing-edgeflaptestcommand

*Indicatesanoverlay generated.

The original RFCS control law software was devel-

oped as two parts: longitudinal and lateral-directional.
While the delivered code was modularized, some func-

tions were distributed through several modules. Air-

data was the principal segment calculated in more than

one module and was processed in the input-output
and in the lateral-directional control law sections. To

allow completion of updates to one functional group

without affecting another functional group, the soft-
ware was modified to include all airdata functions in

input-output (item 4 in list). The update rate for
airdata-dependent gain scheduling was at 80 Hz, but

airdata was updated at 20 Hz. Consequently to in-

crease the throughput margin, the code was modified

to update the airdata-dependent gains at 20 Hz. Un-

less better profiling tools are developed, these problems

in throughput margin will continue to be found in final

hardware-in-the-loop testing.

During the flight program, modifications were made
to correct problems or make improvements. The ma-

jority of these changes involved a simple constant or a

couple of line changes. A few were more extensive and
included new capabilities. An OBES was incorporated

in RFCS to generate commands to the surfaces using

a function generator for sine waves and doublets.

Simulation Software Modifications

The RFCS Ada code was ported to the software sim-

ulation. This code was developed on a minicomputer

system and ported to a computer where it could be
validated using the real-time, all-software simulation.

Because the simulations were developed on the sim-

ulation computer, the Ada RFCS code was initially

ported to this computer where it could interface with

the residing simulation through shared memory. The
simulation computer was incapable of supporting the

Ada code in the time required. The code was then

ported to a Unix-based workstation RFCS control law
computer with a different Ada compiler. Here, the
RFCS code communicated with the simulation com-

puter through the universal memory network (UMN)
instead of shared memory. 7 Real-time performance

speed improved significantly on this computer. This

performance improvement was the result of several fac-
tors. These factors included the limited time avail-

able on the simulation computer and the improved Ada

compiler available on the RFCS control law computer.

Additional code was added to set-up a means of ex-

changing data between the Ada RFCS code and the
real-time simulation. Because of timing restrictions,

the calling order of the routines in the executive RFCS

program was also changed. The hardware-in-the-loop
code's executive operates at a 160-Hz frame rate over-

all. The individual routines are called at various rates.

Originally, two 80-Hz tasks ran alternately on an even
or an odd frame. One task handled the longitudinal

control laws, while the other frame handled the lateral-
directional control laws. The Ada on the RFCS control

law computer was unable to support the 160-Hz sched-
ule without time overruns. As a result, the even-odd-

frame arrangement was replaced by a new calling se-

quence. This sequence first calls the longitudinal mode
calculations and then calls the lateral-directional mode

calculations. Otherwise, the source code developed on

the minicomputer system is easily transferred to the

RFCS control law computer.

Significant Issues

This section describes major issues relating to Ada

and its use in real-time embedded control systems.

These issues include porting, documenting, modifying,

and testing the software. In addition, software devel-

opment is discussed.

Portability

The RFCS Ada code was fairly portable. This code

was transferred from the MIL-STD-1750A processor to

the simulation computer to the control law computer.

The majority of modifications needed for Ada to run
in the simulation were changes to account for differ-

ences in the flight control and simulation systems. Be-

cause the hardware-in-the-loop RFCS source code re-

sides on the minicomputer system and the all-software
code is on the Unix-based workstation, two Ada com-

pilers were used to achieve optimal performance on the
individual machines. Use of two compilers can also

67

resultindifferencesif onecompilerismorenearlyaccu-
ratethantheother.Forexample,theUnix-basedcom-
pilerwouldflagerrorsthat theminicomputercompiler
wouldaccept.Thetwocompilersprovidedanextra
testfor errorsin theAdasoftware.

Documentability
AnoftenmentionedfeatureofAdais thefactthatit

isaself-documentingcode.Althoughveryeasytoread,
Adaisself-documentingonlyonadetailedlevel;that
is, Adais moresimilarto self-commenting.Theself-
documentingfeatureof Adadoesnotremovetheneed
for developingspecificationsandsystemdocumenta-
tion. Anysystemrequiresa specificationfor thesoft-
wareto bedevelopedagainst;otherwise,errorsprop-
agatethroughoutthe system.Useof a higherorder
language,suchasAda,makesit easierto designand
codea systemwithoutdevelopingspecifications.As
with anyotherprogramminglanguage,suchprogram
specificationsasspecificationblockdiagrams,program
requirements,softwaredesignspecifications,andpro-
gramflowchartsareneededto giveanoverallpicture
of theentiresystem.

Modifiability

UseofAdaoranyhigherorderlanguagesimplifiesall
but themostdifficultsoftwareupdates.Thecompiler
canshowtheassembly-levelcodealongwith theAda,
whichhelpswhentryingto understandtheoperation
of thesoftware.An assembly-levellistingis necessary
whenthesoftwareisnot performingasexpected,and
debuggingisrequired.Theassembly-levellistingand
thememorymapareusedto examinethesystemmem-
ory andto assistin locatingerrors.This technique
wasusedseveraltimesduringthesystemintegration
stage.TheAdacodeprovedfairlyeasyto modify,but
assembly-levelmodificationswerestill used.

Updatesto theRFCSsoftwarearedoneeitherby
overlayor by recompiling.To changeconstants,an
overlayis performed.Foranoverlay,nosourcecode
is changed.Themajorityof overlaysarethenadded
to latersoftwareversionsbymodifyingthesourcecode
andrecompiling.Loadfiles,themachinecodein hex-
adecimalthatisloadedontotheflightcontrolcomput-
ers,areupdatedon theminicomputersystem.Once
completed,thenewlyoverlaidcodeis downloadedto
theflight controlcomputers.Becausea recompileis
notperformed,abit-for-bitcomparisoncanbedoneto
verifyanymemorychanges.

Forall otherchanges,the programis recompiled.
Thisprocessinvolveschangingthesourcecodeto meet
thenewrequirements.Oncethe changeshavebeen
addedto thecode,acompilationisperformed.Then,
the newsoftwareis downloadedto the flight control
computers.Softwarechangesmadeby recompiling

requiresignificantlymoretestingthanthosedoneby
overlay.Becausea bit-for-bitcomparisoncannotbe
performed,it cannotbeassumedthat thesourcecode
updatesdidnotaffectanyothersoftwarefunctionality.

Onedisadvantagein usingAdais that changesin
the callingsequence,additionof newroutinesto the
code,orbothrequirechangesin thecompilationorder
of the dependentroutines.Theproperorderor se-
quencemustbeestablishedto ensurethatanyroutine
whichdependsonanotherroutineis compiledbefore
thecallingroutineis compiled.Thisorderingprocess
canbecomeadifficulttaskwhenmajorchangesin the
callingsequencearerequired.

Anotherdisadvantageofhigherorderlanguagesver-
susassemblylanguagesisthatsoftwareoverlayscannot
beinsertedon-line.With assemblylanguage,a logic
overlaycanbeinsertedinto thesourcecodeandre-
assembled.Overlayscanbewrittento branchto apre-
determinedpatchareain read-onlymemory(ROM),
executethenewcode,andreturnto thepointof ori-
gin. Thistypeof changerequireslesstestingthana
completereassemblybecausea bit-for-bitcomparison
canbeperformed.
Testability

Thelanguageusedto implementthesoftwarehas
no impacton the testingrequirements.Thelevelof
testingrequiredis determinedbythecriticalityofthe
system.Obviously,flight-criticalsystemsrequiremore
testingthanthosesystemsthat arelessessential.Re-
gardlessof the programminglanguageused,verifica-
tionandvalidationtestsarerequiredto flightqualifya
newsoftwarerelease.Verificationis theprocessof de-
terminingthat thesoftwareperformsasspecified.This
processisaccomplishedbydevisingindividualtestsfor
eachspecifiedsoftwaretask,conductingthetest,and
observingthatthetaskwascompletedaccordingto the
specification.Validation,thebroadertask,seekstode-
termineif thesystemof whichthesoftwareis a part
performsadequatelyto fulfill theflightrequirements.
Open-andclosed-loopfailuremodesandeffectstests
areamongthetechniquesusedin softwarevalidation.
In thesetests,failuresareartificiallyinduced,anda
correctsystemresponseto thosefailuresisverified.

Verification. When a higher order language is used,

the compiler and linker must provide outputs which

give the tester the information required to understand

and verify the code. This information includes a list-

ing of the assembly language code generated by the

compiler and a memory map showing the locations of
all modules, constants, and variables. The ability to

complete the testing without modifying in any way the

code under test is highly desirable. If the required test

interfaces exist, then the locations of the input and out-

put variables provide the interfaces to the code under

68

test. Thetestermayinjectandmonitorinputsand
outputs to determine if the code performs as specified.
If modification of the software is necessary to allow the

tests to be performed, then a test patch iswritten.

Digital flight control systems seldom have the test in-

terfaces required to perform complete verification test-

ing without modification of the code under test. Of
course in many instances, the change being verified

involves inputs and outputs which are available dur-

ing normal system operation. Test patches are not re-

quired in these cases. When test patches are required
for higher order languages, these patches are coded in

assembly language using areas of program and variable

memory that are not used by the compiled software.
The software under test is minimally impacted.

Validation. Software is validated in conjunction

with the system of which it is a part. In the case of

the RFCS, validation is accomplished on the HARV
hardware-in-the-loop simulation. Time histories, fail-

ure modes, and effects tests are performed while the

simulated aircraft is flying closed-loop. Depending on

the interfaces available, occasionally test patches are

needed to simulate system failures which cannot be in-

duced in any other way.

Software Development

Development of real-time code requires an under-

standing of the requirements and limitations of mem-

ory and time. Real-time software generally requires
more time than is readily available; therefore, care

must be taken in developing the code. Use of a higher

order language makes it more difficult to control the

timing directly. The compiler generates the code and,

even if optimized, may not produce the most time-
efficient code. As discussed in the Compiler section

and in the Portability subsection, one of the two com-

pilers used by HARV detects more errors than the
other. Although not required, use of two compilers

provides a good check-and-balance scheme for any soft-

ware development.

The use of two or more compilers is not required and

was only used on this program to facilitate the transfer
of the Ada software to the all-software simulation. The

majority of the Ada software in the all-software simula-

tion is identical to the flight software. Using the same
software in the simulation and in the flight software

saves time when transferring the software between sys-

tems. Software implementation differences between the

hardware-in-the-loop and all-software simulations are

also minimized.

The developer also needs to be aware of any mi-
crocode errors within the target processor. Many com-

piler developers work closely with processor manu-
facturers. Such cooperation allows the developers to

correct microcode errors within the compiler, but not

all errors will be necessarily corrected. Validated Ada

compilers can also l_ave errors. The assembly-code

listing also gives the implementer the information re-

quired to deal wlth _i_ossible compiler errors and with
known microcode errors in the target processor hard-

ware. Knowledge of the system is still necessary for the

development of software for real-time systems.

Concluding Remarks

The NASA Dryden Flight Research Facility experi-

ence with using Ada software for the F-18 High Alpha
Research Vehicle has been positive. Although the Ada

software developed was not for an extremely complex

system, it is representative of most uses. Compiled
Ada code can be used in a flight-critical system. The

conclusions reached in this paper are not effected by

the lack of a complex redundancy management or of a

flight-critical system.

Positive conclusions reached concerning Ada are

listed next. Ada is

• Portable--Ada was transferred among three com-

puters using different compilers. The changes
made to the transported code were to account for

system changes.

• Documentable--For commenting purposes, this

easy-to-read code is self-documenting. On the
other hand, the self-documenting feature of Ada

does not remove the requirement for system-level

documentation or for a specification before coding.

• Modifiable---Ada is easy to modify, but it is still

easier to make simple constant changes without

recompiling. Individual changes in the code that
are of major significance and numerous changes

that are of less significance are easy to accomplish
in Ada.

• Testable--Ada is no more difficult to test than any

other language. The criticality of the system--

not the language used to program the system--

defines the testing requirements. Any system can
be coded in Ada. For example, a system with com-

plex redundancy management functions can easily

be written in Ada, and the testing requirements

would not change. A flight-critical system can eas-

ily use Ada, and the testing requirements would be

the same as for other flight-critical systems.

Negative factors identified were not really Ada spe-
cific; that is, these factors are also found in other higher

order languages. If a system does not follow standard

software design practices, then problems will occur.

Software and system specifications must be developed

59

beforethesoftwareimplementations.Compilers,even
validatedAdacompilers,canhaveerrors.Asaresult,
compiledsoftwaremustbetestedbeforeuse.

References

1Regenie,Victoria,DonaldGatlin,RobertKempel,
andNeilMatheny,"TheF-18HighAlphaResearch
Vehicle:A High-Angle-of-AttackTestbedAircraft,"
AIAA-92-4121,Aug.1992.(AlsoavailableasNASA
TM-104253,1992.)

2Chacon,Vince,JosephW. Pahle,andVictoriaA.
Regenie,Validation of the F-18 High Alpha Research

Vehicle Flight Control and Avionics Systems Modifica-

tions, NASA TM-101723, 1990.

3pahle, Joseph W., Bruce Powers, Victoria Regenie,

Vince Chacon, Steve Degroote, and Steven Murnyak,

Research Flight-Control System Development for the

F-18 High Alpha Research Vehicle, NASA TM-104232,
1991.

4Honeywell Inc., Military Avionics Division,
DIGTAC III--Advanced Fault Tolerant Control Tech-

niques: Software Final Report, St. Louis Park, MN,

Sept. 1990.

5Sodano, Nancy M., Ada RcaItime Performance As-

sessment Internal Research and Development Task: Fi-

nal Report, CSDL--C-5808, Charles Stark Draper Lab-

oratory, Inc., Cambridge, MA, Oct. 1985.

6Software Productivity Consortium, Ada Quality

and Style: Guidelines for Professional Programmers,

SPC-9i061-N, version 02.00.02, Herndon, VA, 1991.

7Reinwald, Carl, "Universal Memory Network

Overview," Universal Memory Network--Standalone

Memory Interface (SMI-32) System Technical Manual,

TM/SMI32/001/00, Computer Sciences Corporation,
Lompoc, CA, June 1,1992, pp. D-2 to D-12.

7O

o
iw

o

I0

I

w

u. E

m

_O
c_ '5cc
OC_ _CL

°_ _

O4

C_
r_

°I
C_

o-

7]

÷

72

0
rr"

u

73

Right

Pitch and yaw
vectoring

commands
from claws

I Thrust reference

>1 Thrust estimate

Scaled
commands

Estimated
thrust

• Left and right assignment
• Command limiting
• Vane pair selection
• Inactive vane calculation

• Load limiting

No_zzle No_zzle

radius pressure
ratio

Fig. 4 Simplified thrust mixer.

JLeft engine I
Top
Outboard

Inboard

I Right engine J
Top
Outboard
Inboard

I DPRAM I

Thrust
vane
mixer

Input-
output

t

Thrust
estimator

I Engage-
> disengage

logic

Lateral-
directional

control
laws

Longitudinal
control

laws

Fig. 5 The research flight control system software functional areas.

74

Simulation

computer

• Aerodynamic model
• Basic control lawsi r Analog and discrete _

input-output _

• Propulsion model _-

• Actuator models
• Sensor models _- M/L-STD_1-553" (_atal_uses

l I RFCS

control
law

computer
Mission

computers
1 or2

Fig. 6 The High Alpha Research Vehicle aU-software simulation.

Analog
and

discrete

input-
output

i Simulation

computer
• Aerodynamic model
• Propulsion model
• Sensor models

Activator
positions

v

Flight
control

computer
console

Actuatorl _.,

models ["

t Analog and discrete),

_ _ _input-output_ _. Cockpit

Mission
computers -

Analog and 1 or 2
discrete input-output

GE 701E DPRAM RFCS

Actuator commands "_1 [-. v

and positions Flight control computers

Fig. 7 The High Alpha Research Vehicle hardware-in-the-loop simulation.

75

Actuator :[

positions

Analog and
discrete

input-output

TEF and LEF

positions

Simulation

computer
• Aerodynamic model
• Propulsion model
• Sensor models

Analog and discrete

input-out_put _ _ Cockpit

MI[_STD'_1553 multiplex buses

v

Actuator
commands

and positions

Fig. 8

Flight
control

computer
console

LEF and TEF
actuator
models

TEF and LEF
commands

and positions

Analog and
discrete

.,-_input-output >i

Actuator I

commandsand positions

Mission
computers

1 or2

control computers

GE701E DPRAM RFCS

The High Alpha Research Vehicle ironbird simulation.

76

